团队推出一种新的神经形态计算架构,即类脑神经计算模型“Dendristor”,旨在复制突触的组织(即神经元之间的连接)和树突的树状结构(即从神经元体延伸出来的突起)。这种创新的树突网络模拟了树突状结构及其固有的时空处理特性,为未来人工智能提供了高能效的视觉感知能力。

研究人员合作设计并开发了一种新设备,可以反映生物树突的形态和功能。这种被称为「树突」(Dendristor)晶体管的设备利用了涂有离子掺杂溶胶-凝胶膜的多栅极晶体管的物理特性,模拟了树突执行的计算。Dendristor 的突出之处在于它处理信息的方式与神经元及其网络的生物形态非常相似,而不是目前人工神经网络典型的批处理方式。Dendristor 模型实现了树突分支间和神经元间的特定塑性,从而提高稀疏神经网络中的学习效率。这种方法允许 Dendristor 在其树突分支内对传入信号的序列和方向进行编码,从而提高其识别运动的能力。特别是模型中包含的「沉默突触」,即由树突分支电位激活的突触,增强了其对信号方向的敏感性,优化了其视觉感知过程。

相关研究以《Neuromorphic dendritic network computation with silent synapses for visual motion perception》为题,于 6 月 6 日发布在《Nature Electronics》上。
